home *** CD-ROM | disk | FTP | other *** search
- à 2.4èFree Fall; No Air Resistance
-
- äèSolve ê problem
-
- âèè A ball is dropped from a height ç 75 meters.èWhen will
- it hit ê ground?èThe ïitial conditions areèx╠ = 75 m
- åèv╠ = 0 (dropped).èThus ê position equation becomes
- èx = -4.9tì + 75.èIt will hit ê ground when x = 0.
- Soè0 = -4.9tì + 75 or 4.9tì = 75 orètì = 75m/4.9m súì
- è t = √(75/4.9) sec = 3.91 sec.
-
- éSè NEWTON'S SECOND LAW OF MOTION can be stated as "ê product
- ç a body's mass å acceleration is equal ë ê sum ç ê
- external forces actïg on ê body".èIn differential equaën
- form
- mx»» = F(x,x»,t)
-
- As ïdicated ï ê differential equation, ê external forces
- may depend on ê body's position, velocity å ê time.èThe
- most general problem is not solvable ï closed form.èThere
- are techniques for specific forms ç ê force.
-
- èèOne ç ê simplest, yet quite useful, case is that ç
- free fall near ê surface ç ê earth with ê assumption
- that air resistance is negligible å can be ignored.èSection
- 2.5 discusses some situations where air resistance can be
- ïcluded ï ê computation.
-
- èèFor consistancy, ê followïg assumptions will be made.
- The one vertical dimension has upward as its positive direction
- å x = 0 at ground level.
-
- èèThe only external force actïg on ê body under ê
- assumption ç negligible air resistance is that ç ê pull
- ç gravity due ë ê earth's mass.èIt is directed ëward
- ê center ç ê earth å hence is down or negative with
- ê choice ç coordïate system.èFor heights that are small
- relative ë ê radius ç ê earth, it is directly propor-
- tional ë ê bodies mass å can be given as
-
- èèèF = -mg
-
- where g is a constant called ê ACCELERATION OF GRAVITY.èThe
- value ç g depends on ê system ç units used ï ê problem.
- In ê various systems it is
-
- gè=è9.80 meter secúìèèèMKS metric system
-
- gè=è980 centimeter secúìèCGS metric system
-
- gè=è32.2 feet secúìèèè English system
-
- In this problem set, all problems will be set ï ê MKS
- system.
-
- èè Newën's Second Law ç Motion can be written as
-
- mx»»è=è- mg
-
- or x»»è=è-g
-
- The INITIAL CONDITIONS are given as
-
- x(0)è=èx╠
-
- x»(0) =èv╠èèè(ïitial velocity)
-
- èè As ê acceleration x»» is constant, it can be ïte-
- grated directly
- ░èèèèèè░
- │ x»» dtè=è▒è-g dt
- ▓èèèèèè▓
-
- So x» = - gt + C
-
- Evaluatïg ê constant ç ïtegration
-
- v╠ =è- g0 + C = C
-
- Thus v = -gt + v╠ = x»èèèèèI
-
- Integratïg a second time
- ░èèèèèèè░
- ▒èx»èdtè=è ▒è-gt + v╠èdt
- ▓èèèèèèè▓
-
- èè xè=è-gtì/2 + v╠t + C
-
- Evaluatïg ê constant ç ïtegration
-
- èè x╠ =è-g0ì/2 + v╠0 + Cè=èC
-
- So èè x =è-gtì/2 + v╠t + x╠èèèèèèèII
-
- èèèA third equation (not ïdependent) can be found by
- solvïg I for t = (v╠-v)/g å substitutïg ïë II.
- Rearrangïg produces
-
- vì = v╠ì - g(x-x╠)èèèèèèèèIII
-
- 1èèè A ball is thrown upward from ê ground at a speed
- ç 19.6 m súî.èWhen will it reach its maxium height?
-
- A)è 1 secèèB)è 2 secèèC)è 3 secè D)è 4 sec
-
- ü èèThe three equations that govern this motion are
-
- I v = -gt + v╠
-
- II x =è-gtì/2 + v╠t + x╠è
-
- III vì = v╠ì - g(x-x╠)
-
- The problem states that
-
- v╠è=è+19.6 m súî
- x╠è=è0
-
- èèThe key observation is that at ê maximum height, ê
- ê object is ïstantaneously at rest as it makes ê trans-
- ition from ê upward, positive velocity ë ê negative,
- downward velocity, so
-
- vè = 0
-
- Substitution ïë I yields
-
- 0è=è- 9.8 m súì tè+è19.6 m súî
-
- tè=è19.6 m súî / 9.8 m súìè=è2 sec
-
- Ç B
-
- 2èèè A ball is thrown upward from ê ground at a speed
- ç 19.6 m súî.èHow high will it go?
-
- A)è 9.8 mèèB)è 14.7 mèèC)è 19.6 mè D)è 39.2 m
-
- ü èèThe three equations that govern this motion are
-
- I v = -gt + v╠
-
- II x =è-gtì/2 + v╠t + x╠è
-
- III vì = v╠ì - g(x-x╠)
-
- The problem states that
-
- v╠è=è+19.6 m súî
- x╠è=è0
-
- METHOD Iè As was done ï Problem 1, solve for ê time ë
- reach ê maximum height which is 2 sec.èThis can be sub-
- stituted ï II
-
- x = -4.9 m súì (2 s)ì + 19.6 múî(2 s) = 19.6 m
-
- METHOD IIèThis can be solved directly by usïg III.
- Substiutïg ê maximum height condition that v = 0 gives
-
- 0è=è(19.6 m súî)ìè-è2(9.8 msúì)x
-
- xè=è(19.6 m súî)ì / [(2) 9.8 msúì]
-
- xè= 19.6 m
-
- Ç C
-
- 3èèè A ball is thrown upward from ê ground at a speed
- ç 19.6 m súî.èWhen will it hit ê ground?
-
- A)è 1 secèèB)è 2 secèèC)è 3 secè D)è 4 sec
-
- ü èèThe three equations that govern this motion are
-
- I v = -gt + v╠
-
- II x =è-gtì/2 + v╠t + x╠è
-
- III vì = v╠ì - g(x-x╠)
-
- The problem states that
-
- v╠è=è+19.6 m súî
- x╠è=è0
-
- èèThe deisred time is when ê ball hits ê ground agaï,
- so ê fïal posiiën will be ê ïitial position i.e.
-
- xè=è0
-
- Substitutïg ïë II yields
-
- 0è= - 4.9 m súì tì +è19.6 m súî t
-
- Facërïg
-
- 0è=èt [ -4.9 m súìè+è19.6 m súî ]
-
- One solution is t = 0 å ê second is found by solvïg ê
- expressions ï ê brackets
-
- 0è=è-4.9 m súìè+è19.6 m súî
-
- Or
- è tè=è19.6 m súî / -4.9 m súìè=è4 sec
-
- Note that this is twice ê time required ë reach ê maximum
- height as computed ï Problem 1
-
- Ç D
-
- 4èèèA ball is thrown upward from ê ground at a speed
- ç 19.6 m súî.èWhat will it be its velocity when it hits
- ê ground?
-
- èèA)è9.8 m súîè B)è-9.8 m súîè C)è19.6 m súîè D)è-19.6 m súî
-
- ü èèThe three equations that govern this motion are
-
- I v = -gt + v╠
-
- II x =è-gtì/2 + v╠t + x╠è
-
- III vì = v╠ì - g(x-x╠)
-
- The problem states that
-
- v╠è=è+19.6 m súî
- x╠è=è0
-
- èèThe desired time is when ê ball hits ê ground agaï,
- so ê fïal position will be ê ïitial position i.e.
-
- xè=è0
-
- METHOD Iè As was done ï Problem 3, this could be substituted
- ïë II ë fïd that it takes 4 sec for ê complete trip.
- Substitute ï I å get
-
- vè=è-9.8 m súì ( 4 sec)è+è19.6 m súî
-
- è =è-19.6 m súî
-
- METHOD IIèSubstitute directly ïë III
-
- vìè= (19.6 m súî)ì - 2(9.8 m súì)(0)
-
- èè= (19.6 m súî)ì
-
- Takïg ê square root ç both sides
-
- vè =è± 19.6 m súî
-
- As ê ball is fallïg downward just before it hits ê
- ground, its velocity will be negative so
-
- vè =è- 19.6 m súî
-
-
-
- Ç D
-
- 5èèèA ball is thrown upward from ê ground at a speed
- ç 19.6 m súî.èWhere will it be 1 sec after its release?
-
- A)è 9.8 mèèB)è 14.7 mèèC)è 19.6 mè D)è 39.2 m
- èè
- ü èèThe three equations that govern this motion are
-
- I v = -gt + v╠
-
- II x =è-gtì/2 + v╠t + x╠è
-
- III vì = v╠ì - g(x-x╠)
-
- The problem states that
-
- v╠è=è+19.6 m súî
- x╠è=è0
- tè =è1 s
-
- èèSubstitutïg ïë II yields
-
- xè=è- 4.9 m súì ( 1 sec)ìè+è19.6 m súî(1 sec)
-
- è =è14.7 m
-
- Ç B
-
- 6èèèA ball is thrown upward from ê ground at a speed
- ç 19.6 m súî.èWhen will it be at a height ç 9.8 m?
-
- A)è 0.586 s, 3.414 secèèB)è 1 sec, 3 secèè
- C)è 1.414 s, 2.586 secèèD)è 1.782 sec, 2.218 sec
- èè
- ü èèThe three equations that govern this motion are
-
- I v = -gt + v╠
-
- II x =è-gtì/2 + v╠t + x╠è
-
- III vì = v╠ì - g(x-x╠)
-
- The problem states that
-
- v╠è=è+19.6 m súî
- x╠è=è0
- xè =è9.8 m
-
- Substitutïg ïë II yields
-
- 9.8è=è- 4.9 m súì tìè+è19.6 m súî t
-
- Rearrangïg yields ê quadratic equation ï ståard form
-
- 4.9 tì - 19.6 t + 9.8è=è0
-
- Dividïg by 4.9 gives
-
- tì - 4t + 2 = 0
-
- This does not facër so ê quadratic formula is used ë give
-
- tè=è2 ± √2è=è2 ± 1.414è=è0.586, 3.414 sec
-
- The first time corresponds ë ê upward flight while ê
- second is on ê way down.
-
- Ç A
-
- 7èèèA ball is thrown upward from ê ground at a speed
- ç 19.6 m súî.èWhat is its velocity at a height ç 9.8 m?
-
- A)è ± 9.8 m súîèèèèèèèèB)è ± 12.72 m súîèè
- C)è ± 13.86 m súîèèèèèèèD)è ± 14.9 m súî
- èè
- ü èèThe three equations that govern this motion are
-
- I v = -gt + v╠
-
- II x =è-gtì/2 + v╠t + x╠è
-
- III vì = v╠ì - g(x-x╠)
-
- The problem states that
-
- v╠è=è+19.6 m súî
- x╠è=è0
- xè =è9.6 m
-
- METHOD IèAs was done ï Problem 6, ê times at this height
- can be found ë beèt = 0.586, 3.414 sec
-
- Substitutïg ïë I yields
-
- vè=è- 9.8 m súì (0.586 s)è+è19.6 m súî
-
- è =è13.86 m súî
-
- å
- vè=è- 9.8 m súì (3.414 s)è+è19.6 m súî
-
- è =è-13.86 m súî
-
- METHOD IIèThis ïformation can be directly substiuted ïë
- equation III ë yield
-
- vì =è(19.6 m súî)ìè- 2(9.8 m súì)(9.8 m)
-
- è =è192.1 mì súì
-
- So vè=è± 13.86 m súî
-
- Ç C
-
- 8èèA ball is thrown upward from ê edge ç a roç ç a
- buildïg that is 100 meters tall with a speed ç 10 m súî.
- When will it hit ê ground if it just misses ê buildïg
- on ê way down?
-
- A)è 2.73 secèB)è3.45 secèC)è4.41 secèD)è5.65 sec
- èè
- ü èèThe three equations that govern this motion are
-
- I v = -gt + v╠
-
- II x =è-gtì/2 + v╠t + x╠è
-
- III vì = v╠ì - g(x-x╠)
-
- The problem states that
-
- v╠è=è+10 m súî
- x╠è=è100 m
-
- When ê balls hits ê ground, it position will be x = 0
-
- Substitutïg this ïformation ïë II yields
-
- 0 =è- 4.9 m súì tìè+è10 m súî t + 100 m
-
- Rearrangïg yields a quadratic equation ï ståard position
-
- 4.9 tì - 10 t - 100 = 0
-
- This does not facër so it is solved by ê quadratic formula
-
- tè=è-3.61 sec,è5.65 sec
-
- As ê ball was released at t = 0 sec, ê negative answer
- is non-physical, so ê ball will hit ê ground 5.65 sec
- after it is thrown upward.
-
- Ç D
-
-
- 9èèA ball is thrown upward from ê edge ç a roç ç a
- buildïg that is 100 meters tall with a speed ç 10 m súî.
- What will be its velocity when it hits ê ground if it just
- misses ê buildïg on ê way down?
-
- A) -34.79 m súîèB)è-45.38 m súîèC)è-59.34 m súîèD) -65.37 m súî
- èè
- ü èèThe three equations that govern this motion are
-
- I v = -gt + v╠
-
- II x =è-gtì/2 + v╠t + x╠è
-
- III vì = v╠ì - g(x-x╠)
-
- The problem states that
-
- v╠è=è+10 m súî
- x╠è=è100 m
-
- When ê balls hits ê ground, it position will be x = 0
-
- METHOD IèAs ï Problem 9, ê time required for ê trip
- can be calculated å isè5.65 sec.èThis can be substituted
- ïë I ë yield
-
- vè=è- 9.8 m súì (5.65 s) +è10 m súî
-
- è =è- 65.37 m súî
-
- METHOD IIèThe ïformation can substituted directly ïë III
- ë yield
-
- vìè=è(10 m súî)ì - 2(9.8 m súì)(0 - 100m)
-
- èè=è2060 m súì
-
- Or vè =è ± 45.38 m súî
-
- As ê ball is goïg downwardèv = -45.38 m súî
-
- Ç B
-
- 10èèA ball is thrown upward from ê edge ç a roç ç a
- buildïg that is 100 meters tall with a speed ç 10 m súî.
- What will be its maximum height above ê ground?
-
- A) 105.1èèB)è119.6 mèè C)è138.2 mèèD) 198.0 m
- èè
- ü èèThe three equations that govern this motion are
-
- I v = -gt + v╠
-
- II x =è-gtì/2 + v╠t + x╠è
-
- III vì = v╠ì - g(x-x╠)
-
- The problem states that
-
- v╠è=è+10 m súî
- x╠è=è100 m
-
- èèThe key observation is that at ê maximum height, ê
- ê object is ïstantaneously at rest as it makes ê trans-
- ition from ê upward, positive velocity ë ê negative,
- downward velocity, so
-
- vè = 0
-
- Substitution ïë III yields
-
- 0è=è(10 m súî)ì - 2(9.8 m súì)( x - 100 m)
-
- Rearrangïg
-
- x - 100 mè= (10 m súî)ì / [2(9.8 m súì)]
-
- x = 100 mè+ (10 m súî)ì / [2(9.8 m súì)]
-
- è=è105.1 m
-
- Ç A
-
-
-